
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: object-oriented programming -
 Inheritance

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Object-oriented programming
■ Private and public properties and methods
■ Intro to inheritance

● Today
○ Object-oriented programming

■ Inheritance
■ Public, private, and protected access

● Announcements
○ Prelim 2 grades released. Review the prelim if you didn’t do well!
○ Project 6 released (due Dec 5th)

■ If you need a partner, fill out partner service by Tuesday 11/22
○ Read Insight 14.1 before next lecture
○ Reading for today’s lecture is a recap of all OOP that you should know.
○ Course evaluations will happen Monday, November, 28th to Thursday, Dec. 8th.

Fill out for 1 point back on your final exam!

Let’s consider a new fair die class
classdef Die < handle
 properties (Access=private)
 sides=6;
 top
 end

 methods
 function D = Die(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 end

 methods (Access=private)
 function setTop(...) ...
 end
end

What about a trick die?

Closely related trick die class
classdef Die < handle
 properties (Access=private)
 sides=6;
 top
 end

 methods
 function D = Die(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 end

 methods (Access=private)
 function setTop(...) ...
 end
end

classdef TrickDie < handle
 properties (Access=private)
 sides=6;
 top
 favoredFace
 weight=1;
 end

 methods
 function D = TrickDie(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 function w = getWeight(...) ...
 function f = getFavFace(...) ...
 end

 methods (Access=private)
 function setTop(...) ...
 end
end

Can we get all the functionality of Die in TrickDie without
re-writing all the Die components in class TrickDie?

classdef Die < handle
 properties (Access=private)
 sides=6;
 top
 end

 methods
 function D = Die(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 end

 methods (Access=private)
 function setTop(...) ...
 end
end

classdef TrickDie < handle

 properties (Access=private)
 favoredFace
 weight=1;
 end

 methods
 function D = TrickDie(...) ...
 function w = getWeight(...) ...
 function f = getFavFace(...) ...
 end

end

Inherit the components of class die

classdef Die < handle
 properties (Access=private)
 sides=6;
 top
 end

 methods
 function D = Die(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 end

 methods (Access=private)
 function setTop(...) ...
 end
end

classdef TrickDie < Die

 properties (Access=private)
 favoredFace
 weight=1;
 end

 methods
 function D = TrickDie(...) ...
 function w = getWeight(...) ...
 function f = getFavFace(...) ...
 end

end

< [className] allows us to inherit
properties and methods from another
class!

Can we get all the functionality of Die in TrickDie without
re-writing all the Die components in class TrickDie? YES!

This class would be the superclass or
the parent class

This class would be the subclass or
the child class

Which components get “inherited”?

● Public components get inherited
○ Properties and methods of the

parent class that are public can be
accessed in subclass.

● Private components exist in object of
child class, but cannot be directly
accessed in child class (we say they exist
but are not inherited)

● Note the difference between inheritance
and existence!

sides

top

6

2

setTop() Die()
getSides() roll()
getTop() disp()

A Die
object

A TrickDie
object

sides

top

6

2

setTop() Die()
getSides() roll()
getTop() disp()
TrickDie()
getWeight()
getFavFace()

favoredFace 5

weight 3

Exist

Inherited

sides

top

6

2

setTop() Die()
getSides() roll()
getTop() disp()

A Die
object

A TrickDie
object

sides

top

6

2

setTop() Die()
getSides() roll()
getTop() disp()
TrickDie()
getWeight()
getFavFace()

favoredFace 5

weight 3

classdef Die < handle
 properties (Access=private)
 sides=6; top;
 end
 methods
 function D = Die(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 end
 methods (Access=private)
 function setTop(...) ...
 end
end

classdef TrickDie < Die
 properties (Access=private)
 favoredFace; weight=1;
 end
 methods
 function D = TrickDie(...) ...
 function w = getWeight(...) ...
 function f = getFavFace(...) ...
 function roll(...) ...
 end
end

Protected attribute

● Attributes dictate which members get inherited
● Private

○ Not inherited, can only be directly accessed in the classdef in which it’s defined
● Public

○ Inherited, can be accessed anywhere (in the classdef, in files outside the classdef, and the
command window)

● Protected
○ Inherited, can be accessed in the classdef in which it’s defined and the classdef for all

subclasses.
■ Cannot be directly accessed anywhere else

Note: all members (properties and methods) from a superclass exist in the
subclass, but the private ones cannot be accessed directly in the subclass–can be
accessed through inherited (public or protected) methods.

classdef Die < handle
 properties (Access=private)
 sides=6; top;
 end
 methods
 function D = Die(...) ...
 function roll(...) ...
 function disp(...) ...
 function s = getSides(...) ...
 function t = getTop(...) ...
 end
 methods (Access=protected)
 function setTop(...) ...
 end
end

classdef TrickDie < Die
 properties (Access=private)
 favoredFace; weight=1;
 end
 methods
 function D = TrickDie(...) ...
 function f = getWeight(...) ...
 function f = getFavFace(...) ...
 end
end

Let’s play with dice in the
command window
d = Die(6);

disp(d.top) %error: top is private

d.getTop() %OK

t = TrickDie(2, 10, 6);

disp(t.top) %error: top is private

 % to class Die

t.getTop() %OK

d.setTop(5) %error: setTop is

t.setTop(5) % protected (only

 % available to classdef

 % Die and TrickDie)

Subclasses must call the superclass’ constructor

● In a subclass’ constructor, call the
superclass’ constructor before
assigning values to the subclass’
properties

○ If you don’t, MATLAB implicitly calls parent
constructor with no inputs

● Calling the superclass’ constructor
should not be conditional (should not
be inside an if-statement)

classdef Child < Parent

 properties
 propC
 end

 methods
 function obj = Child(argC, argP)
 obj = obj@Parent(argP);
 obj.propC = argC;
 end
 …
 end
end

See constructor in TrickDie.m

Overriding methods
● Subclasses can override inherited methods
● To override, the method in the subclass has the same name (but has a

different method body)

classdef Die
 ...

 function D = Die(...)
 ...
 D.roll()
 end

 function roll(self)
 ...
 end

 ...
end

classdef TrickDie < Die
 ...

 function TD = TrickDie(...)
 ...
 TD = TD@Die(...);
 ...
 TD.roll();
 end

 function roll(self)
 ...
 end

 ...
end

Overriding methods
● Subclasses can override inherited methods
● To override, the method in the subclass has the same name (but has a

different method body)
● How do we determine which method will be used?

○ The object that is used to invoke a method determines which version is used

% In the command window
d = Die(6);
d.roll(); % calls the roll method from Die
t = TrickDie(6, 2, 6);
t.roll(); % calls the roll method from TrickDie
t2 = TrickDie(4, 3, 6) % calls disp method from TrickDie
 % (if it exists).

● The method most specific to the class of the object is used!

Accessing superclass’ version of a method

● We’ve seen that subclasses can
override superclass’ methods

● Subclasses can still access
superclass’ version of the
method

See method disp in TrickDie.m

classdef Child < Parent

 properties
 propC
 end

 methods
 ...
 function x = methoda(arg)

 y = methoda@Parent(arg);

 ...
 end
 end
end

For this code to work, methoda in the
parent class must be:

public
protected
private

Important ideas in inheritance

● Keep common features as high in the hierarchy as reasonably possible
● Use the superclass’ features (methods and properties) as much as possible
● “Inherited” from parent class to child class → can be accessed as though

defined in the child class itself.
○ Private members in a superclass exist in subclasses but cannot be accessed directly

● Inherited features are continually passed down the line

Where can properties and method be directly accessed?

public

private

protected

In command
window

In class
methods

In subclass
methods

✅ ✅ ✅

🆇

🆇

✅

✅✅

🆇

In external
script or
function

✅

🆇

🆇

SetAccess and GetAccess

classdef Schedule < handle

properties (SetAccess = private, GetAccess = public)

sname = '';

window = Interval.empty();

eventArray = {};

end

methods

...

end

end

Attribute SetAccess allows us to restrict
how we are able to set properties and
methods

% in command window
s = Schedule(a, b, c);
s.window = b2; % error

Attribute GetAccess allows us to restrict
how we are able to get properties and
methods

% in command window
s = Schedule(a, b, c);
disp(s.window) % OK

Arrays of objects

● An array of objects can reference objects of a single class
B(1) = Die(); % vec of die objects (length 1)

B(2) = Die(6); % vec of die objects (length 2)

B(3) = TrickDie(1, 2, 6); % Error!

● A cell array can reference objects of different classes
A{1} = Die(); % cell array of length 1

A{2} = TrickDie(2,10); % cell array of length 2

Vocab you should know
● Class : The template that specifies a custom MATLAB type.

○ Defines properties and methods for that class.
● Object : Specific instance of a class.
● Constructor : special method that returns the handle to a newly allocated

object
● Handle : unique identifier of an object generated by MATLAB; output of

the constructor
● Function overriding : change the behavior of a built-in function for an

object of a class
● Function overloading : writing functions that take variable number of input

arguments
○ nargin : returns the number of input arguments given in the call to

the currently executing function
● A subclass inherits from a superclass. A child class inherits from a

parent class

_________ ________

______ ______

Try to fill in on your own before the next slides

Vocab you should know
● Class : The template that specifies a custom MATLAB type.

○ Defines properties and methods for that class.
● Object : Specific instance of a class.
● Constructor : special method that returns the handle to a newly allocated

object
● Handle : unique identifier of an object generated by MATLAB; output of

the constructor
● Function overriding : change the behavior of a built-in function for an

object of a class
● Function overloading : writing functions that take variable number of input

arguments
○ nargin : returns the number of input arguments given in the call to

the currently executing function
● A subclass inherits from a superclass. A child class inherits from a

parent class

